[CONTRIBUTION FROM THE CHEMICAL LABORATORY OF THE JOHNS HOPKINS UNIVERSITY]

The Grignard Reaction in the Synthesis of Ketones. II. The Preparation of a Series of Monoand Di-chlorodesoxybenzoins

By Sanford S. Jenkins and Edwin M. Richardson

In the preceding article¹ a new method of synthesizing desoxybenzoins (benzylphenyl ketones) by means of the Grignard reaction was described. It was found that these compounds could be prepared by the reaction of benzylmagnesium halides with primary benzamides and that quite satisfactory yields were obtained when the reactants, in the ratio of three to four equivalents of the former to one of the latter, were heated over sufficiently long periods of time. Although rearrangements are known to take place when benzylmagnesium halides are treated with certain substances,² no evidence of any abnormal product was obtained in this work. By means of the Beckmann reaction¹ the oximated derivatives were transformed into the corresponding anilides, the structures of which were established by comparison with authentic specimens.

In the present article eight mono- and di-chlorodesoxybenzoins, which were prepared and shown to be authentic by the methods outlined above, will be described. Thus by condensing *o*-chlorobenzamide and benzamide with benzylmagnesium chloride and *o*-chlorobenzylmagnesium bromide, benzyl *o*-chlorophenyl, *o*-chlorobenzyl phenyl and *o*-chlorobenzyl *o*-chlorophenyl, *e*-chlorobenzyl phenyl and *o*-chlorobenzyl *p*-chlorophenyl, *benzyl phenyl* and *p*-chlorophenyl, *benzyl phenyl* and *p*-chlorophenyl, *benzyl phenyl* and *p*-chlorophenyl, *benzyl phenyl* and *p*-chlorophenyl ketones were obtained from the corresponding amides and Grignard reagents. Finally *o*- and *p*-chlorobenzamides were treated with *o*- and *p*-chlorobenzylmagnesium bromides to produce *o*-chlorobenzyl *p*-chlorophenyl and *p*-chlorophenyl ketones (see Table I for preparational data and constants of the ketones).

Under the conditions of our experiments seven of the ketones produced single oximes which proved to be of the *anti*-benzyl types. From *o*-chlorobenzyl *o*-chlorophenyl ketone, however, both the *syn*- and *anti*-benzyl ketoximes were obtained. It is quite possible that *syn* types could be prepared from the other ketones as well by suitably varying the conditions. In a later communication we shall describe the results of an extensive investigation dealing with the oximation of desoxy ketones in

(1) Jenkins, THIS JOURNAL, 55, 703 (1933).

⁽²⁾ For references see Austin and Johnson, *ibid.*, **54**, 647 (1932); Gilman and Kirby, *ibid.*, **54**, 345 (1932).

⁽³⁾ Benzyl p-chlorophenyl ketone, which was prepared by means of the Friedel-Crafts reaction, and the corresponding oxime have been described by Szego and Ostinelli [Atti III congresso naz-chim. pura applicaia, p. 395-401 (1930); cf. C. A., 25, 1524 (1931)]. The compounds, if authentic, were impure, for the melting points given were over 5° too low.

⁽⁴⁾ Petrenko-Kritschenko [Ber., 25, 2239 (1892)] has described the preparation of p-chlorobenzyl phenyl ketone but the melting point given was too low.

TABLE I																				
	Preparational Data and Constants of Ketones with Analyses and Molecular Weights																			
		a • • • •	D.	, 	Time,	T		77 . 4	•	Yield	., .			M. p.	20	D 1	Chlori	ne, %	Mol.	wt.
) דד יי	Grignard	Be	nzamide	nours	Letter	n	Ketone		% 71	Appea	rance		(corr.),	°C.	Formula	Calco.	round	Calco.	Found
	C811	5CH2WigCl	0-010	26114COIN112	10	А	Беп	izyi o-emoro pue	inyi	11	Faint ye	now on		Б. р. 170 (5 mm.	.)		5 10.01	14.00	200.0	241
0	0-C1	C ₆ H ₄ CH ₂ MgBr	C ₆ H ₅	CONH2	24	в	0-C	hlorobenzyl phe	enyl	73	Clusters	of cre	am	70.5	,	CuHuCli) 15.37	15 44	230 5	237
e	o-C1	C6H4CH2MgBr	o-C10	C6H4CONH2	50	с	o-C	hlorobenzyl o-		70	Faint ye	llow vise	cous	B. p. 195	-210		· · · · ·		200.0	
	с. 1 7	CIL MaCl	5 C10	CONU.	14	р	C	hlorophenyl		77	Oil Crooser o	alored as	-10-	(6 mm	.)	$C_{14}H_{10}Cl_2$	0 26.76	25.80	265	274
	C611 6-C1	1C-HCHMaBr	C _e H _c	CONH	24	E .	- <u>Бе</u> п	hlorobenzyl phe	envl	70	Thin col	orless nl	ates	107.0		CuHuCl	15.37	15.91	230.5	240
1	<i>b</i> -Ci	1CoH4CH2MgBr	- 0-C10	CaH4CONH2	24	F	ν-C	hlorobenzyl pic	II y I	10	1 min con	oricas pre	acc.s	100		CHINCK	5 10.01	10.20	200.0	210
			7			_	ĺ c.	hlorophenyl		74	White n	eedles		114		C14H10Cl2	O 26.76	26.86	265	275
e	o-C1	C ₆ H ₄ CH ₂ MgBr	<i>p</i> -C10	C6H4CONH2	65	G	o-C	hlorobenzyl p- hlorophenyl		80	Colorles	s needles	5	108.5		C14H10Cl	O 26.76	26.69	265	270
í	p-C	lC₀H₄CH₂MgBr	o-C10	C6H4CONH2	40	н	p-C	hlorobenzyl o-			White g	ittering	-							
							c	hlorophenyl		72	scales			65		$C_{14}H_{10}Cl_2$	0 26.76	26.87	265	275
									T.	ABLE	e II									
					Co	ONSTA	NTS	OF OXIMES A	ND.	Ann	JDES WI	TH ANA	ALYT	ICAL DA	тА					
3	Let-	-				M. p.					1	М.р.	C)xime	Chlo	rine, %	Anilide		Chlori	ne, %
	ter	Ketoxime		Appearance	(ce	orr.), °	C.	Anilide	Apr	peara	nce (co	rr.), °C.	fo	rmula	Calcd	. Found	formula		Calcd.	Found
	A	Anti-Benzyl o-chl phenyl	loro-	White prisms	131	. 5–13	2.5	Phenylacet-o- chloro-	Fin n	ie wh natte	ite d needles	120	C14E	I12NClO	14.46	14.52	$C_{14}H_{12}NC$	10	14,46	14.28
:	в	Anti-o-Chloroben	zyl-	White prisms	85	86		o-Chloro-	Clu	sters	of fine	140	C14E	I12NC10	14.46	14.38	C14H12NC	10(5)		
C ¹ Anti-o-Chlorobe o-chloropheny		Anti-o-Chloroben	zyl	Balls of crean	n 103	103-104		o-Chloro-		ie wh	ite	159.5	C ₁₄ F	I11NCl2O	25.30	25.40	C14H11NC	1_2O	25.30	2
		o-chlorophenyl	hlorophenyl					phenylacet- o-chloro-		leedle	es									
C ² Syn-o-Chloroben o-chlorophenyl		Syn-o-Chlorobenz	:yl	Colorless dia-	145	145-146		o-Chloro-ben-		ite n	eedles	111	C ₁₄ H	I11NCl2O	25.30	25.43	C14H11NC	l2O	25,30	25.40
		mond-sha		ped			zoyl-o-chlo-													
				places				amine												
	D	Anti-Benzyl p-chl phenyl	loro-	Long colorless glittering needles	s 122	. 5–123	3.5	Phenylacet- p-chloro-	Loi le	ng th ess no	in color- eedles	168	СиН	I12NC10	14.46	14.52	C14H12NC	10	14.46	14.31
2	Е	Anti-p-Chloroben	zy1	White prisms	95	-96		p-Chloro-	Col	orles	s prisms	168	C ₁₄ H	I12NC10	14.46	14.67	C14H12NC	10(5)		
:	F	Anti-p-Chloroben	zyl	Short white	124	. 5–12	5.5	p-Chloro	Sho	ort w	hite	190	C ₁₄ E	I11NCl2O	25.30	25,20	C14H11NC	1_2O	25,30	25.08
		p-chlorophenyl		needles				phenylacet- p-chloro-		leedle	ês									
	G	A nti-o-Chloroben p-chlorophenyl	zyl	White prisms	105	-106		o-Chloro- phenylacet- p-chloro-	Clu	ister iair-li ieedle	of fine ike	184	C14H	I11NCl2O	25.30	25.18	C14H11NC	12O	25.30	25.21
	н	Anti-p Chloroben	ızyl	Thick white	88	-89		p-Chloro-	Wh	ite p	risms	171	C14I	I11NCl2O	25.30	25.15	C14H11NC	1_2O	25.30	25.40
		o-chlorophenyl		prisms				phenylacet- o-chloro-												

1619

which certain generalizations will be discussed. For the present, however, we are concerned with this study only as a means of further confirming the structures of the ketones (see Table II).

Experimental

The amides were prepared by refluxing the corresponding acids on the water-bath with double the calculated amount of thionyl chloride until the evolution of hydrogen chloride and sulfur dioxide ceased. The excess of thionyl chloride was then distilled under reduced pressure and the crude acid chlorides poured into ice-cold ammonium hydroxide solution. The resulting amides were purified by crystallization from water. The method is convenient and the yields are satisfactory.

The Grignard reagents were prepared and the condensations carried out according to the method and technique described in article I¹ of this series. In the present work it was found, however, that the yields could be improved and better products (not so yeilow) obtained when the condensations were carried out in an atmosphere of hydrogen. Employing this modification the yield of ketone H was increased from 55 to 72%. The yields reported were obtained by treating four equivalents of the Grignard reagents (0.10 to 0.20 mole) to one equivalent (0.025 to 0.050 mole) of the amides. The yields were calculated on the basis of the amides employed and represent the product obtained after one crystallization from alcohol. The melting points of the once crystallized ketones were within two or at most four degrees of the fusing points (see Table I) of the pure compounds.

Ketone B was purified by recrystallization from ligroin (Skellysolve "C"), while D, E, F, G and H were recrystallized from alcohol.

The anilides, as obtained by rearrangement of the oximes, were obtained in yields of 55 to 80%. The structures of these substances were established by mixed melting points with authentic anilides prepared from the corresponding acids and amines.

The oximes listed were all prepared by mixing 1.00 g. of ketone, 1.00 g. of hydroxylamine hydrochloride, 1.60 g. of potassium acetate (dried) and 30 cc. of 95% alcohol. The mixture was allowed to stand overnight and heated on the water-bath under reflux for three hours. To the solution hot water was then added until the potassium chloride dissolved and a faint opalescence appeared. On slowly cooling the oximes usually crystallized without difficulty.

The crude oximes were obtained in yields of 90-99%. Oximes A and F were recrystallized from dilute alcohol (about 80%), while B, D, E, G and H were purified by recrystallization from ligroin (Skellysolve "C"). In order to separate C¹ and C² the following method (which may not be the best) was used: the mixture of crude oximes was dissolved in the smallest amount of slightly diluted (about 90%) alcohol and allowed to stand for several days at room temperature. When crystallization appeared to be complete, the oxime was separated and further purified in the same manner. By this means C² (syn-benzyl isomer) was obtained. The mother liquors were combined and evaporated to dryness under reduced pressure. The solid was then recrystallized from ligroin. This product (C¹) proved to be the *anti*-benzyl isomer. We are not certain that either of these isomers is entirely pure but each of them was recrystallized until its melting point remained constant. The relative yields of *syn* and *anti* isomers seemed to vary with different batches of the crude mixture although the *anti* isomer was always obtained in the greatest percentage.

The oximes were rearranged in the following manner: 0.50 g. of oxime was dissolved in 20 cc. of anhydrous ether and after cooling in an ice-bath the solution was treated with 1.0 g. of powdered phosphorus pentachloride. The mixture was then shaken for five minutes and poured into about 100 cc. of ice water. The ether was evaporated by

1620

April, 1933

means of a stream of air, after which the crude anilide was filtered, washed with water and crystallized from alcohol. In the case of oxime C^2 the purest anilide was obtained when the ether solution was refluxed on the water-bath for ten minutes.

For comparison the anilides were prepared independently by heating 0.010 mole weights of the corresponding acids and amines in an oil-bath at $180-200^{\circ}$ for two hours. The anilides were crystallized from alcohol until pure. Anilides B and E have been described heretofore.⁵

o- and p-chlorophenylacetic acids were prepared according to the method of Mehner.⁵ The nitriles, however, were not purified but were hydrolyzed directly to the acids by refluxing with concentrated hydrochloric acid for four hours.

The *o*-chlorobenzylamine employed in this work was obtained from *o*-chlorobenzaldoxime according to the method of Franzen.⁶ The procedure was considerably shortened, however, by steam distilling the crude amine rather than separating it from the ether solution as the carbonate. The chloroanilines and chlorobenzyl halides employed in this work were purchased from the Eastman Kodak Company.

The molecular weight determinations of B, D, E, F, G and H were made by means of the Rast method⁷ using borneol instead of camphor. The Menzies-Wright boiling point method⁸ was employed in cases A and C.

The halogen analyses were made by the Parr bomb method.

Ketones A and C were not pure as is evidenced by their analyses. Because of the small quantities available (about 8 cc. of each) it was not feasible to purify them further.

Summary

The Grignard method of synthesizing desoxybenzoins, which was described in article I, has been extended.

By condensing primary benzamides with benzylmagnesium halides under suitable conditions a series of eight mono- and di- chloro ketones has been prepared and studied.

In no case was any evidence of an abnormal product observed in this type of Grignard reaction.

Under the conditions of the experiments seven of the ketones produced only *anti*-benzyl oximes. From *o*-chlorobenzyl *o*-chlorophenyl ketone both *syn*- and *anti*-benzyl ketoximes were obtained.

The oximes were rearranged by the Beckmann method and the structures of the resulting anilides were established.

In the course of this work twenty-one new compounds were obtained and characterized.

BALTIMORE, MARYLAND

RECEIVED SEPTEMBER 19, 1932 PUBLISHED APRIL 6, 1933

⁽⁵⁾ Mehner, J. prakt. Chem., 62, 562 (1900).

⁽⁶⁾ Franzen, Ber., 38, 1415 (1905).

⁽⁷⁾ Rast, ibid., B55, 1051 (1922).

⁽⁸⁾ Menzies and Wright, THIS JOURNAL, 43, 2314 (1921).